Tenascin-X: beyond the architectural function

نویسندگان

  • Ulrich Valcourt
  • Lindsay B Alcaraz
  • Jean-Yves Exposito
  • Claire Lethias
  • Laurent Bartholin
چکیده

Tenascin-X is the largest member of the tenascin (TN) family of evolutionary conserved extracellular matrix glycoproteins, which also comprises TN-C, TN-R and TN-W. Among this family, TN-X is the only member described so far to exert a crucial architectural function as evidenced by a connective tissue disorder (a recessive form of Ehlers-Danlos syndrome) resulting from a loss-of-function of this glycoprotein in humans and mice. However, TN-X is more than an architectural protein, as it displays features of a matricellular protein by modulating cell adhesion. However, the cellular functions associated with the anti-adhesive properties of TN-X have not yet been revealed. Recent findings indicate that TN-X is also an extracellular regulator of signaling pathways. Indeed, TN-X has been shown to regulate the bioavailability of the Transforming Growth Factor (TGF)-β and to modulate epithelial cell plasticity. The next challenges will be to unravel whether the signaling functions of TN-X are functionally linked to its matricellular properties.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanomechanical properties of tenascin-X revealed by single-molecule force spectroscopy.

Tenascin-X is an extracellular matrix protein and binds a variety of molecules in extracellular matrix and on cell membrane. Tenascin-X plays important roles in regulating the structure and mechanical properties of connective tissues. Using single-molecule atomic force microscopy, we have investigated the mechanical properties of bovine tenascin-X in detail. Our results indicated that tenascin-...

متن کامل

Tenascin-X, collagen, elastin, and the Ehlers-Danlos syndrome.

Tenascin-X is an extracellular matrix protein initially identified because the gene encoding it overlaps with the human CYP21B gene. Because studies of gene and protein function of other tenascins had been poorly predictive of essential functions in vivo, we used a genetic approach that critically relied on an understanding of the genomic locus to uncover an association between inactivating ten...

متن کامل

“A Comparative Exploration of the Phenomenological Conception of Creative Imagination and Its Role in the Digital and Non-Digital Architectural Design Processes”

Imagination and its relation to creativity are among the most important issues related to the design category in various areas of architectural inquiry such as architectural design, whose function and role have changed in recent decades due to use and application of computers in the architectural design processes. Given all the changes occurred in the meaning and concept of architecture, by the...

متن کامل

Tenascin-X expression in tumor cells and fibroblasts: glucocorticoids as negative regulators in fibroblasts.

Tenascin-X has recently been shown to be a novel member of the tenascin family and its distribution is often reciprocal to that of tenascin-C in the developing mouse embryo. We have investigated the expression of tenascin-X in fibroblasts and carcinoma cells in culture. Tenascin-X protein was secreted in vitro in the conditioned media at an apparent molecular mass of approximately 450 kDa. In a...

متن کامل

Abdominal aortic aneurysm is associated with high serum levels of tenascin-X and decreased aneurysmal tissue tenascin-X.

BACKGROUND Tenascin-X is a large extracellular matrix protein that is abundantly expressed in several connective tissues. A 140-kDa C-terminal fragment of tenascin-X is present in human serum. Complete deficiency of tenascin-X is associated with Ehlers-Danlos syndrome, and these patients show major connective tissue alterations in their skin, as well as blood vessel fragility. In this study, we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2015